从矩阵左上角走到右下角的走法(含证明)

在NxM的方格中,以左上角格子为起点,右下角格子为终点,每次只能向下走或者向右走,请问一共有多少种不同的走法给定两个正整数int n,int m,请返回走法数目。

传统做法:dp[n][m]= dp[n-1][m] + dp[n][m-1] (n>1,m>1)
组合做法:一共要走(n-1)+(m-1)次其中有(n-1)次要选择向下走,当选者好向下走的位置后向右走的位置也随之确定,即dp[n][m] = C(n+m-2, n-1),同理有(m-1)次选择向右走即dp[n][m] dp[n][m] = C(n+m-2, n-1)
故:dp[n][m] = C(n+m-2, n-1) = C(n+m-2, m-1)


一些证明方法:
抽象出杨辉三角
这里写图片描述
这里写图片描述
同理可证m=k+1

打印路径:(代码来自网络)
这里写图片描述

#include <stdio.h>  

typedef struct temp  
{  
    int x;  
    int y;  
    int parent;  
}Queue;  

void path(int m, int n)  
{  
    Queue q[1000];  
    int front = 0, rear = 0, i;  

    q[rear].x = 0;  
    q[rear].y = 0;  
    q[rear++].parent = -1;  
    while (front != rear)  
    {  
        if (q[front].x == m-1 && q[front].y == n-1)  
        {  
            i = front;  
            while (i != -1)   
            {  
                printf("%3d <-", q[i].x*n + q[i].y+1);  
                i = q[i].parent;  
            }  
            printf("\n");  
        }  

        if (q[front].y < n-1)  
        {  
            q[rear].x = q[front].x;  
            q[rear].y = q[front].y+1;  
            q[rear++].parent = front;  
        }  

        if (q[front].x < m-1)  
        {  
            q[rear].x = q[front].x+1;  
            q[rear].y = q[front].y;  
            q[rear++].parent = front;  
        }  

        front++;  
    }  
}  

int main()  
{  
    path(6,5);  
    return 0;  
}  
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页