算法提高 合并石子 (区间dp)

问题描述
  在一条直线上有n堆石子,每堆有一定的数量,每次可以将两堆相邻的石子合并,合并后放在两堆的中间位置,合并的费用为两堆石子的总数。求把所有石子合并成一堆的最小花费。
输入格式
  输入第一行包含一个整数n,表示石子的堆数。
  接下来一行,包含n个整数,按顺序给出每堆石子的大小 。
输出格式
  输出一个整数,表示合并的最小花费。
样例输入
5
1 2 3 4 5
样例输出
33
数据规模和约定

  1<=n<=1000, 每堆石子至少1颗,最多10000颗。

import java.util.Scanner;
public class 合并石子 {
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		int[][] temp = new int[1010][1010]; 
		int[][] dp = new int[1010][1010];
		int[] num = new int[1010];
		int n = sc.nextInt();
		
		for(int i=1; i<=n; i++) {
			num[i] = sc.nextInt(); // 保存数值
			temp[i][i] = num[i];   // 第i个石头数目
		}
		for(int i=1; i<n; i++) {
			for(int j=i+1; j<=n; j++) {
				temp[i][j] = temp[i][j-1] + num[j]; // i到j石头数目
			}
		}
		// 类似归并排序的算法
		for(int r=2; r<=n; r++) {         // 间距r
			for(int i=1; i<=n-r+1; i++) { // 起点i
				int j = i+r-1;            // 终点j
				int min = Integer.MAX_VALUE;
				dp[i][j] = Integer.MAX_VALUE;
				for(int k=i; k<j; k++) {
					int t = dp[i][k] + dp[k+1][j] + temp[i][j];
					if(t<min) min = t;
				}
				dp[i][j] = min;
			}
		}
		System.out.println(dp[1][n]);
	}
}

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页